Section 5.5

Math 231

Hope College

Let $\{\lambda_1, \ldots, \lambda_k\}$ be the eigenvalues of an $n \times n$ matrix A.

- If any λ_j is not real, then ℝⁿ does not have a basis of eigenvectors of A, but ℂⁿ might.
- Cⁿ has a basis consisting of eigenvectors of A if and only if dim E_{λi} = m_{λi} for every λ_j after extending scalars to C.
- If either ℝⁿ or ℂⁿ has a basis of eigenvectors of A, then D = P⁻¹AP, where P is the n × n matrix whose columns are the eigenvectors of A and D is the diagonal matrix of eigenvalues of A, listed with appropriate multiplicity.

イロト イポト イヨト イヨト

Let $\{\lambda_1, \ldots, \lambda_k\}$ be the eigenvalues of an $n \times n$ matrix A.

- If any λ_j is not real, then ℝⁿ does not have a basis of eigenvectors of A, but ℂⁿ might.
- Cⁿ has a basis consisting of eigenvectors of A if and only if dim E_{λi} = m_{λi} for every λ_j after extending scalars to C.
- If either ℝⁿ or ℂⁿ has a basis of eigenvectors of A, then D = P⁻¹AP, where P is the n × n matrix whose columns are the eigenvectors of A and D is the diagonal matrix of eigenvalues of A, listed with appropriate multiplicity.

・ロット (雪) () () () ()

Let $\{\lambda_1, \ldots, \lambda_k\}$ be the eigenvalues of an $n \times n$ matrix A.

- If any λ_j is not real, then ℝⁿ does not have a basis of eigenvectors of A, but ℂⁿ might.
- Cⁿ has a basis consisting of eigenvectors of A if and only if dim E_{λ_j} = m_{λ_j} for every λ_j after extending scalars to C.
- If either ℝⁿ or ℂⁿ has a basis of eigenvectors of A, then D = P⁻¹AP, where P is the n × n matrix whose columns are the eigenvectors of A and D is the diagonal matrix of eigenvalues of A, listed with appropriate multiplicity.

ヘロト 人間 とくほとくほとう

Let $\{\lambda_1, \ldots, \lambda_k\}$ be the eigenvalues of an $n \times n$ matrix A.

- If any λ_j is not real, then ℝⁿ does not have a basis of eigenvectors of A, but ℂⁿ might.
- Cⁿ has a basis consisting of eigenvectors of A if and only if dim E_{λ_i} = m_{λ_i} for every λ_j after extending scalars to C.
- If either ℝⁿ or ℂⁿ has a basis of eigenvectors of A, then D = P⁻¹AP, where P is the n × n matrix whose columns are the eigenvectors of A and D is the diagonal matrix of eigenvalues of A, listed with appropriate multiplicity.

イロン 不良 とくほう 不良 とうほ

Let $\{\lambda_1, \ldots, \lambda_k\}$ be the eigenvalues of an $n \times n$ matrix A.

- If any λ_j is not real, then ℝⁿ does not have a basis of eigenvectors of A, but ℂⁿ might.
- Cⁿ has a basis consisting of eigenvectors of A if and only if dim E_{λ_j} = m_{λ_j} for every λ_j after extending scalars to C.
- If either ℝⁿ or ℂⁿ has a basis of eigenvectors of A, then *D* = P⁻¹AP, where P is the n × n matrix whose columns are the eigenvectors of A and D is the diagonal matrix of eigenvalues of A, listed with appropriate multiplicity.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Even if an $n \times n$ matrix A is not diagonalizable, we can always find a nicer 'canonical form' for A.

Let $\lambda \in \mathbb{C}$, and let *k* be a positive integer. The **Jordan block** of size *k* with eigenvalue λ , denoted $J_k(\lambda)$, is the $k \times k$ matrix with λ along the main diagonal and ones along the 'first superdiagonal':

$$J_k(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & \cdots & 0 & 0 \\ 0 & 0 & \lambda & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda \end{pmatrix}$$

ヘロト 人間 ト ヘヨト ヘヨト

Any matrix which has a series of Jordan blocks along its diagonal, and zeros everywhere else, will be called a **Jordan Canonical Form**. The eigenvalues and sizes of the Jordan blocks occurring may be different. Thus, a Jordan Canonical Form looks like

$$\left(\begin{array}{ccccc} J_{k_1}(\lambda_1) & 0 & 0 & \cdots & 0\\ 0 & J_{k_2}(\lambda_2) & 0 & \cdots & 0\\ 0 & 0 & J_{k_3}(\lambda_3) & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & J_{k_m}(\lambda_m) \end{array}\right),$$

where each 0 represents a zero matrix of the appropriate size.

Theorem: Given any matrix $A \in M_n(\mathbb{R})$, there is a Jordan Canonical Form *J* and an invertible $n \times n$ matrix *P* with

$$J=P^{-1}AP.$$

In the case that *A* does not have real eigenvalues, we will have to extend scalars to find *J* and *P*; that is, $J \in M_n(\mathbb{C})$ and $P \in M_n(\mathbb{C})$.

The matrix J is unique up to rearrangement of the Jordan blocks involved.

If *A* is diagonalizable, then *J* will be a diagonal matrix, i.e. each Jordan block involved will be a 1×1 matrix.

We will give examples of the Jordan Canonical Form for 2×2 and 3×3 matrices in class. These will be useful for solving certain types of linear systems of differential equations.

토 🖌 🔺 토 🛌